
Building a Bayesian Factor Tree
From Examples

Francesco Palmieri, Gianmarco Romano and Pierluigi Salvo Rossi
Dipartimento di Ingegneria dell’Informazione, Seconda Universita’ di Napoli

via Roma 29, 81031 Aversa, Itay
Email: francesco.palmieri@unina2.it

gianmarco.romano@unina2.it
pierluigi.salvorossi@unina2.it

Davide Mattera
Dipartimento di Ingegneria Biomedica,
Elettronica e delle Telecomunicazioni

Universita’ di Napoli Federico II
via Claudio 21, 80125 Napoli, Italy

Email: mattera@unina.it

Abstract—A criterion based on mutual information among
variables is proposed for building a bayesian tree from a finite
number of examples. The factor graph, in Forney-style form, can
be used as an associative memory that performs probabilistic
inference in data fusion applications. The procedure is explained
with the aid of a fully-described example.

I. INTRODUCTION

Solving probabilistic problems on graphs via belief propaga-
tion [1] has become a very promising paradigm in many fields
such as communications, artificial intelligence and digital
signal processing [2][3][4]. The bayesian graphical approach
shows great potential when we need to integrate smoothly
observations and previous knowledge. The idea of “injecting”
in a graph our current observations, and “collecting” the
response of the system after belief propagation, can be very
useful in providing dynamic inference and support to human
decision making. The bayesian paradigm presented in the
literature under many names, such as Bayesian Networks,
Generative Models, Factor Graphs, Markov Random Fields,
Associative Memories, etc., reflects a very common intuition
about how a “natural” information system should work [5] [6].
Observations and hypotheses about brain cortex functioning
[7], seem to confirm that memory is a distributed property of
a neural network, and that it is accessed bidirectionally and
hierachically.

The literature on the topic is now quite vast. Successful ap-
plications of belief propagation to codes [8][9] are well known.
Considerable effort is being currently dedicated to improving
the paradigm for better message handling and learning. In
our work, we emphasize the Factor Graph (FG) formulation
[8] [3], that assigns variables to edges, and functions to
blocks. Factor Graphs resemble common block-diagrams and
seem to provide an easier path to VLSI and FPGA hardware
realizations.

In data fusion problems, the challenge is to build systems
that can integrate very heterogenous data. We need to learn
the mutual relationships among the variables, i.e. we need to
“explain” our observations by deriving a “generative model.”
The model then becomes essentially our distribute memory
that, on the basis of observations, can provide associative recall
in the form of probabilistic inference.

In this paper we propose an algorithm to build a generative
tree on the basis of mutual information measured among the
variables. The idea is inspired by the famous Chow and Liu’s
algorithm [15], which is based on second-order information
and builds a tree across a set of random variables. In our
approach instead, we build a hierarchical tree by defining
new sets of compound variables and use higher-order mutual
information. The idea is presented in reference to a fully-blown
example where we assume that we have to build the hierarchy
solely from a small set of examples. The tree becomes our
previous knowledge about the problem and any observation,
or partial inference about the variables, is injected in the factor
graph that responds with a smooth comparison to its stored
memory after message propagation.

A. Building the information tree

A set of random variables (X1, X2, ..., XN) that be-
long to different finite alphabets X1,X2, ...,XN , are fully
characterized by the their joint probability mass function
p(X1, X2, ..., XN). All the mutual interactions among the
variables, that may be of very different kinds (labels, bits,
attributes, etc.), is contained in the structure of p which can be
very complicated and unknown. The function p may represent
the structure of a phenomenon, a specific generative model,
such as a code, or a rule that ties the variables together.

Note that the information globally exchanged among N
variables is described by the mutual information

I(X1;X2; ...;XN) =

N∑
i=1

H(Xi)−H(X1X2...XN), (1)

where H denotes the entropy [11]. Clearly, if the variables
are independent, the mutual information is null and there is
no structure because p is simply the product of N marginal
densities. In practical cases this is not the case and the
dependence is distributed among the variables in structured,
often unknown, form. When the dependence is described with
a graph, via probability propagation (Bayesian reasoning), we
can use our knowledge by computing a posteriori distributions
[1]. Common graph topologies are chains, multiple chains,
trees, etc. When the graph has loops, inference can become

2010 2nd International Workshop on Cognitive Information Processing

978-1-4244-6459-3/10/$26.00 ©2010 IEEE 440

much more complex because standard message propagation
does not guarantee convergence to the true marginals. In such
cases other approaches must be used, such as the reduction of
the graph to a poly-tree (junction tree algorithm), or random
sampling (see [2] for references).

Unfortunately, in many practical applications of data fusion,
we may have very little knowledge about the system structure
and/or its parameters. If we knew the system topology, we
would have to solve a parametric problem in searching for the
node functions that match our data with a distributed version of
the EM-algorithm [6]. Conversely, if we have no idea of what
the graph structure should be, we have to build our generative
model solely from data, or from our previous knowledge of
the problem [19].

We suppose here that we have available only information
gathered from a set of N sensors in the form of a finite
number of examples (x1[i], x2[i], ..., xN [i]), i = 1, ..., ℓ. Our
objective is to ”learn” the ”generative model” for this set, or
equivalently ”store” this information in a graph, for further
use in probabilistic inference.

Algorithms for growing graphs from data have been pro-
posed in the literature [16], the most famous being Chow
and Liu’s algorithm [15] that approximates with a tree the
joint density function using second order mutual information.
Other methods, such as Kutato and K2 [18], starting from
independent nodes, add progressively new branches among the
variables, following a global entropy optimization. Mixtures
of trees have also been proposed in [17], and trees based
on greedy searches have been demonstrated in [20]. Also,
module networks, proposed by Segal et al. [21], are based on
information trees with homogeneous groups. The interest in
building bayesian trees is clearly in the absence of loops, for
which message propagation provides exact marginalization.

In this paper we take the direct approach of building a tree,
by grouping variables in a hierarchical order according to their
high-order mutual dependence. Often, measuring second-order
dependence may not be sufficient (as shown in the example).
The hierarchy, in forming new compound variables, can exploit
dependence at different tree levels, as it is progressively
discovered.

Note that the possibility of inferring on variable, say Yi,
from some knowledge on Yj , j ̸= i, depends on how small
H(Yi|Yj) is, compared to H(Yi), i.e. on how large I(Yi;Yj)
is. More in general, to infer on a set of variables from other
variables, the mutual information between the two sets is the
relevant parameter. Therefore, in building a system that can
function as an inference machine, we have to account for the
distribution of the mutual information: dependent variables
should be bound together in order to exploit their mutual
dependence.

First note that if the set X = (X1, X2, ..., XN) is split into
two subsets

Xa = (Xa
1 , X

a
2 , ..., X

a
Na), Xb = (Xb

1, X
b
2, ..., X

b
Nb),

Xa ∩Xb = ∅, Xa ∪Xb = X, Na +Nb = N,
(2)

the mutual information can be decomposed as

I(X1;X2; ...;XN) = I(Xa) + I(Xb) + I(Xa;Xb), (3)

where

I(Xa) = I(Xa
1 ;X

a
2 ; ...;X

a
Na), I(X

b) = I(Xb
1;X

b
2; ...;X

b
Nb),

are the mutual informations among the elements of each set
(intra), and I(Xa;Xb) = I(Xa

1X
a
2 ...X

a
Na;X

b
1X

b
2...X

b
Nb) is

the mutual information between the two compound variables
Xa and Xb (inter). More in general, if X is partionend into
n subsets,

X1 = (X1
1 , ..., X

1
N1), X2 = (X2

1 , ..., X
2
N2), ...

..., Xn = (Xn
1 , ..., X

n
Nn),

∑n
i=1 Ni = N,

(4)

the mutual information is decomposed as

I(X1;X2; ...;XN) =
n∑

i=1

I(Xi) + I(X1;X2; ...;Xn). (5)

Figure 1 shows an example where six variables are grouped
hierarchically with the mutual information of each group
(intra) shown on each node. The residual information among
groups (inter), is shown on the right-end side. Proceeding
towards the tree root the residual decreases to zero, because all
the information is compounded in the root variable. The most
efficient distribution of the information for inference from/to
the variables X1, ..., X6, is obtained when dependent variables
are tied together and the residual inter-group information is
reduced as much as possible before reaching the tree root.
Message propagation in the tree during inference reaches con-
vergence more quickly if the variables that need to exchange
information are closely connected. A null residual at a level
before the root would mean that at that level the group vari-
ables are independent. The search for independent groups in
the hierarchy shares some resemblances with the Independent
Component Analysis (ICA) paradigm [12] (we maintain that
the search for independent objects, or information primitives,
should be the objective of any information system).

Note that building a hierachical tree allows for merging of
variables also at higher levels (just like variable X6 in Figure
1). The idea is that a variable should enter the tree at the
level where it finds the closest dependence with another node
variable.

Given a set of examples mutual information can be easily
computed using empirical probability mass functions. Conse-
quently, tree construction proceeds as follows:

(a) Compute the global mutual information I(X) that has to
be distributed in the tree; (b) Search for second-order depen-
dence by generating all the partitions with subsets up to order
two and measure the residual. If second-order dependence
is found, choose the partition that gives the lowest residual.
If no second order dependence is found, or the residual is
too close to I(X), consider higher orders until appreciable
dependence is found. In configurations with equal residuals,
choose the partition that has the smallest connectivity; (c)
Once the first layer has been formed, repeat the algorithm

441

I(X1) I(X2) I(X3) I(X4) I(X5) I(X6) I(X1; ...;X6)

I(X12) I(X345) I(X12;X345;X6)

I(X12345)

I(X123456) 0

I(X12345;X6)

Residual

Fig. 1. The information tree from grouping

X1 X2 X3 X4 X5 X6

Y c 1 * 0 1
Y b 1 * 0 0
N a 0 * 0 0
N b 1 1 0 1
N c 0 1 1 1
N d 1 * 1 0
Y d 1 1 1 1
Y c 0 * 1 0
N b 0 1 1 0
N d 0 * 0 1
Y a 1 1 1 0
Y b 0 * 1 1
N a 1 * 1 1
N c 1 1 0 0
Y d 0 1 0 0
Y a 0 1 0 1

X1 = {N,Y};
X2 = {a, b, c, d};
X3 = {0, 1};
X4 = {∗, 1};
X5 = {0, 1};
X6 = {0, 1};

Fig. 2. The list of examples and the six alphabets.

on the new compound variables and iterate until the tree root
is reached with no residual.

Unfortunately, the best hierarchical grouping for a set of
variables is not necessarily unique and the search complexity
grows quickly with n. However, even adopting suboptimal
groupings, the resulting trees are more efficient in message
propagation with respect to keeping all the examples lumped
into a single compound variable.

In this paper we report the detailed analysis of an example
to explain the procedure and demostrate the associative ca-
pabilities of the tree. Full computational complexity analysis
will be reported elsewhere.

B. Example

Suppose we have available the list of 16 examples shown
in Figure 2 for the six variables X1, ..., X6. We do not
know about their mutual relationships, and everything has
to be inferred from the available samples (our list of ex-
amples is actually obtained from a simple rule, revealed in
Appendix A, but we suppose that we do not know that).
The variables belong to different alphabets and by count-
ing their occurrences, the marginal entropies (in bits) are
H(X1) = H(X3) = H(X4) = H(X5) = H(X6) = 1,
H(X2) = 2. Hence, no first-order information is contained
in the examples. Pairs, such as (X1X2), (X2, X3), (X5X6),
do not show much either, because (simply by counting oc-
currences and computing H(X1X2), H(X3X4), H(X5X6))
I(X1;X2) = I(X3;X4) = I(X5;X6) = 0; i.e. the variables

X1 X2 X3 X4 p Y
N a 0 * 1/16 1
N a 0 1 0 -
N a 1 * 1/16 2
N a 1 1 0 -
N b 0 * 0 -
N b 0 1 1/16 3
N b 1 * 0 -
N b 1 1 1/16 4
N c 0 * 0 -
N c 0 1 1/16 5
N c 1 * 0 -
N c 1 1 1/16 6
N d 0 * 1/16 7
N d 0 1 0 -
N d 1 * 1/16 8
N d 1 1 0 -
Y a 0 * 0 -
Y a 0 1 1/16 9
Y a 1 * 0 -
Y a 1 1 1/16 10
Y b 0 * 1/16 11
Y b 0 1 0 -
Y b 1 * 1/16 12
Y b 1 1 0 -
Y c 0 * 1/16 13
Y c 0 1 0 -
Y c 1 * 1/16 14
Y c 1 1 0 -
Y d 0 * 0 -
Y d 0 1 1/16 15
Y d 1 * 0 -
Y d 1 1 1/16 16

Fig. 3.

are pairwise independent. Nothing changes if we use different
pair partitions. Even with triplets, such as (X1X2X3), we
get I(X1;X2;X3) = 0. To find dependence we have to go
to the fourth order. Grouping variables (X1X2X3X4), we
get the occurrences shown in Figure 3. Half of the strings
have zero probability, the others are uniformly distributed.
Therefore H(X1X2X3X4) = 4 and I(X1;X2;X3;X4) =∑4

i=1 H(Xi) −H(X1X2X3X4) = 1. The four variables are
then mapped in the tree to the new variable Y , shown in
the table of Figure 3. Variable Y is uniformly distributed in
the alphabet Y = {1, .., 16} with H(Y) = 4 (the choice
of the alphabet is totally arbitrary). Further grouping of Y
and X5 can be done in the tree since, as shown in the first
table of Figure 4, the two variables show dependence. The
table reports only the 16 occurrences out of the 32 pairs
of the product set Y × X5, in the order of presentation
of the examples. The joint entropy is H(Y X5) = 4 and
I(Y ;X5) = H(Y) +H(X5)−H(Y X5) = 1. Again, the two
variables Y and X5 can be merged to form a new variable
Z with alphabet Z = {1, ..., 16} uniformly distributed with
entropy H(Z) = 4. The last step in the construction of
the tree is to consider the pair (ZX6), shown in the second
table of Figure 4. The two variables are dependent because
I(Z;X6) = H(Z)+H(X6)−H(ZX6) = 1. The tree root is
our final variable R uniformly distributed in R = {1, ..., 16}.

Figure 6 shows the information tree resulting
from our construction. The six variables exchange
in total I(X1;X2;X3;X4;X5;X6) =

∑6
i=1 H(Xi) −

H(X1X2X3X4X5X6) = 7 − 4 = 3 bits of information. The

442

Y X5 p Z
14 0 1/16 1
12 0 1/16 2
1 0 1/16 3
4 0 1/16 4
5 1 1/16 5
8 1 1/16 6

16 1 1/16 7
13 1 1/16 8
3 1 1/16 9
7 0 1/16 10

10 1 1/16 11
11 1 1/16 12
2 1 1/16 13
6 0 1/16 14

15 0 1/16 15
9 0 1/16 16

Z X6 p R
1 1 1/16 1
2 0 1/16 2
3 0 1/16 3
4 1 1/16 4
5 1 1/16 5
6 0 1/16 6
7 1 1/16 7
8 0 1/16 8
9 0 1/16 9
10 1 1/16 10
11 0 1/16 11
12 1 1/16 12
13 1 1/16 13
14 0 1/16 14
15 0 1/16 15
16 1 1/16 16

Fig. 4.

ResidualX1 X2 X3 X4 X5 X6

1 2 1 1 1 1 3

1

2

3

2

1

0

Fig. 6. The information tree for the example.

first group variables (X1X2X3X4) exchange 1 bit; when
X5 is also added they exchange 2 bits; finally, when all the
variables are included we have a total of 3 bits.

Figure 5 shows the complete final tree in the form of a
Forney-style factor graph [8][3]. Note the presence of the
vertical bars that are the ”=” blocks. The variables of the
”equal” blocks are split into ”equal” variables for easier
message propagation.

The factors in the graph are described by the following
matrices

P (X1|Y) =



1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1


, P (X2|Y) =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


,

P (X3|Y) =



1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1


, P (X4|Y) =



1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1


,

P (Y |Z) =

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


,

P (X5|Z) =



1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
1 0
0 1
0 1
0 1
1 0
1 0
1 0


, P (Z|R) = I16×16, P (X6|R) =



0 1
1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0
0 1
1 0
0 1
0 1
1 0
1 0
0 1


,

which are easily derived from the tables of Figures 3 and 4.
The prior factor P0(R) is uniform on the 16 symbols.

1) Pattern recall: The factor tree, can be used as an asso-
ciative memory: some of the components in X may be unavail-
able (or erased), or more generally, in a data fusion problem,
imperfect knowledge (a probability distribution) about some of
them may be available. Via message propagation and the sum-
product rule [2] we can get the exact a posteriori probabilities.
The information tree also predicts how many bits we can miss
for a perfect recall. In the first group we may miss up to 1
bit of information propagating only up to the first tree-level.
The second group (X1X2X3X4X5) can miss up to two bits
of information, but it needs to climb up to the second level.
Globally the string can miss up to 3 bits of information to
obain a perfect recall.

We have implemented in Matlab complete message propa-
gation in the tree. Probability updates are synchronous (one
block per step) and initial values are uniform. We denote
for a generic variable X , with bX and fX , backward and
forward messages respectively. Suppose that we present to

443

X1

X4

X5

X6

X2

X3

Y 1

�

P (X1|Y)

Y 2

Y 3

�

Y 4

� �

�
�

P (X2|Y)

�

P (X3|Y)

�

�

�

�

�

�

�

�

�

�

-

-
P (X4|Y) �

�

-

�

P (Y |Z)

�

-
P (X5|Z) �

-

�
-

P (Z|R)

�

P (X6|R)

P0(R)

-
�

-

-
�Y

0 Z1

Z2

- -

-

-

-

-

-

-
Z0 R1

R2

R0

�

�

�

�

�

�

�

�

f

b

Fig. 5. The tree in the form of a factor graph.

the system the string (?a1 ∗ 11), with the first variable
missing. The backward messages injected are bX1 = (.5, .5),
bX2 = (1, 0, 0, 0), bX3 = (0, 1), bX4 = (1, 0), bX5 = (0, 1),
bX6 = (0, 1). After only three steps we get fX1 = (1, 0), i.e.
pX1 = fX1 ⊙ bX1 = (1, 0) (perfect recall) where ⊙ denotes
the normalized Hadamard product. 1 The information has been
successfully propagated from the neighbours X2, X3, X4 onto
X1 involving only the first layer. No further steps are necessary
as predicted by the information tree. If we present the system
the string (Y d??11), X3 and X4 are missing (two bits). After
three steps fX3 = (.5, .5) and fX4 = (0, 1). Therefore X4

is already recalled only using the first layer, but X3 is still
uncertain. After five steps, information from X5 via the second
layer reaches the leaf and fX3 = (0, 1), giving perfect recall
as predicted by the information tree. The maximum number
of steps for any pattern that misses three arbitrary bits is seven
(tree diameter). If we present the string (N?11?1), we have
three bits missing. After three steps, fX2 = (0, .5, .5, 0) and
fX5 = (.5, .5). Not enough information is yet available, even
if a double hypothesis is made on X2. After five steps, we get
fX2 = (0, .5, .5, 0) and fX5 = (1, 0), i.e. X5 is resolved, but
X2 is still uncertain. After seven steps, fX2 = (0, 1, 0, 0) and
the recall is completed.

More interesting for data fusion is the use of the system in
“soft mode,” assuming that we only have imperfect observation
of the six variables. For example, we imagine that we have
gathered information about the six variables, but we are not

1We do not provide details about message transformation rules through the
blocks (factors), as they are quite standard [3][14]. It is also well known
that message transformations and combinations across the factors do not
produce valid distributions. In the following, we always present the messages
as distributions after normalization.

sure about their values and inject our belief in the form of
backward messages bX1 = (.1, .9), bX2 = (.25, .25, .25, .25),
bX3 = (.3, .7), bX4 = (.01, .99), bX5 = (.9, .1), bX6 =
(.4, .6). The system responds after seven steps with fX1 =
(.6568, .3432), fX2 = (.4524, .1096, .0807, .3573), fX3 =
(.8136, .1864), fX4 = (.6280, .3720), fX5 = (.3432, .6568),
fX6 = (.5, .5). After products and normalizations, we get our
“improved knowledge” with pX1 = (.1754, .8246), pX2 =
(.4524, .1096, .0807, .3573), pX3 = (.6516, .3484), pX4 =
(.0168, .9832), pX5 = (.8246, .1754), pX6 = (.4, .6). The
system has responded by shifting our beliefs in a way that
accounts for the fixed patterns memorized in tree. The process
can be seen as hard logic (the tree) that interacts with soft
knowledge, thanks to the probabilistic framework [5].

2) Recall in the presence of errors: The patterns given
to the system to generate the tree are memorized exactly.
The graph representation is a useful alternative to simple
table memorization because it can provide answers to partial
questions using only a subset of variables and it can provide
soft probabilistic inference. The memorized ℓ = 16 patterns
are fixed points in the space X = X1×...×X6 that has the size
|X | = 128 and constitutes the training set T ⊂ X . However,
we would like the system to also function when it is presented
with other input configurations that do not belong to T . We
need to properly generalize to “unseen” patterns. The most
appropriate extension is certainly application dependent and
reflects our a priori knowledge about the problem. However,
we can assume, in the absence of other information, that in
the generative model each variable can be spread uniformly
and independently on its alphabeth after being generated by
the tree. This is equivalent to assuming that we have a uniform

444

Vi XiP (Vi|Xi)� �
-

�
-

�
f

b

Fig. 7. The noise model

noise model. Figure 7 shows the block to be added at the end
of the tree for all i = 1, ...6. The conditional probabilities are
described by the matrices

P (Vi|Xi) =

[
pc 1− pc

1− pc pc

]
, i = 1, 3, 4, 5, 6,

P (V2|X2) =


pc

1−pc

3
1−pc

3
1−pc

3
1−pc

3 pc
1−pc

3
1−pc

3
1−pc

3
1−pc

3 pc
1−pc

3
1−pc

3
1−pc

3
1−pc

3 pc

 ,
(6)

where pc is the probability of correct generation.
Now our observations correspond to backward messages

for Vi, i = 1, ..., 6 and the graph diameter is nine. For
example, suppose that we observe the string V = (Nc0 ∗
00). The messages injected in the tree are bV1 = (1, 0),
bV2 = (0, 0, 1, 0), bV3 = (1, 0), bV4 = (1, 0), bV5 =
(1, 0), bV6 = (1, 0). Assuming pc = 0.9, the system re-
sponds after eight steps with fX1 = (.2964, .7036), fX2 =
(.8402, .0230, .0230, .1138), fX3 = (.2964, .7036), fX4 =
(.2964, .7036), fX5 = (.2964, .7036), bX6 = (.5, .5). After
products and normalizations we get pX1 = (.7913, .2087),
pX2 = (.5259, .0144, .3885, .0712), pX3 = (.7913, .2087),
pX4 = (.7913, .2087), pX5 = (.7913, .2087), bX6 = (.9, .1).
Some of the observations have been corrected shifting the
probabilities on different symbols.

Mixtures of imperfect or erroneus observations can be
presented to the system. The tree on the basis of its training
patterns always responds with its opinion (forward message),
that joined with the backward message, provides a final
inference.

II. CONCLUSION

In this paper, we have shown, by means of an example,
how a fixed set of examples can be used to build an inference
tree. Message propagation in the factor graph can be made
more efficient with respect to simple table memorization,
if we build the tree accounting for the mutual information
among the variables in a hierarchical order. The results are
preliminary, but show the great potential of this paradigm for
building inference machines that can handle incomplete and
heterogeneous data.

APPENDIX

The examples of Figure 2 are obtained hiding in X1, ..., X6

the (7,4) Hamming code [13] described by the generating

equations
U1 + U2 + U3 + U5 = 0
U2 + U3 + U4 + U6 = 0
U1 + U2 + U4 + U7 = 0

(7)

with Ui ∈ {0, 1}. The correspondence with the bits are: X1 =
U1 with N = 0 and Y = 1; X2 = (U2U3), with a = (00),
b = (01), c = (10), d = (11); X3 = U4; X4 = U5 with
∗ = 0; X5 = U6; X6 = U7. The sixteen codewords are listed
in a scrambled order. It is well known that the code can be
represented also with a Tanner graph (that has loops) and with
a trellis (no loops) [3][10].

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems, 2nd ed. San
Francisco: Morgan Kaufmann, 1988.

[2] H.A. Loeligher, J. Dauwels, J. Hu, S. Korl, L. Ping and F. Kschischang,
“The Factor Graph Approach to Model-Based Signal Processing”,
Proceedings of the IEEE, vol. 95, n.6, June 2007.

[3] H. A. Loeliger, “An Introduction to Factor Graphs,” IEEE Signal
Processing Magazine, pp. 28-41, Jan 2004.

[4] J. Hu, H.A. Loeligher, J. Dauwels and F. Kschischang, “A General
Comparison Rule for Lossy Summaries/Messages with Examples from
Equalization”, Proceeedings of the 44th Allerton Conference on Com-
munication, Control and Computing, Monticello, IL, Sept. 27-29, 2006.

[5] E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge
University Press, 2003.

[6] M.I. Jordan and T. J. Sejnowski, eds.,Graphical Models: Foundations of
Neural Computation, MIT Press, 2001.

[7] J. Hawkins, On Intelligence, Times Books, 2004.
[8] G. D. Forney, Jr., “Codes on graphs: normal realizations,” IEEE Trans.

Information Theory, vol. 47, no. 2, pp. 520-548, 2001.
[9] Kschischang F.R., B.J. Frey, H.A. Loeliger, “Factor Graphs and the Sum-

Product Algorithm,” IEEE Trans. on Information Theory, Vol. 47, N. 2,
pp. 498-519, February 2001.

[10] D. J. C. McKay, Information Theory, Inference, and Learning Algo-
rithms, Cambridge University Press, 2003.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley,
1991.

[12] A. Hyvarinen, J. Karhunen and E. Oja, Independent Component Analy-
sis, Wiley, 2001.

[13] S. Benedetto and E. Biglieri, Principles of Data Transmission with
Wireless Applications, Kluwer Academic Press, 1999.

[14] F. Palmieri, “Notes on Factor Graphs,” New Directions in Neural
Networks, IOS Press in the KBIES book series, Proceedings of WIRN
2008, Vietri sul mare, June 2008.

[15] C. K. Chow and C. N. Liu, “Approximating Discrete Probability Distri-
butions with Dependence Trees,” IEEE Trans. on Information Theory,
Vol. 14, N. 3, May 1968.

[16] J. Cheng, D. A. Bell and W. Liu, “Learning Belief Networks from Data:
An Information Theory Based Approach,” Proceedings of the Sixth ACM
International Conference on Information and Knowledge Management,
Las Vegas, Nevada, 1997.

[17] M. Meila dn M.I. Jordan, “Learning with Mixtures of Trees,” Journal
of Machine Learning Research, vol. 1, pp. 1-48, October 2000.

[18] E. H. Herskovits and G. F. Cooper, “Kutato: An entropy-driven system
for the construction of probabilistic expert systems from databases,”
Proceedings of the Conference on Uncertainty in Artificial Intelligence
(pp. 5462), Cambridge, MA, 1990.

[19] D. Heckerman, D. Geiger and D. M. Chickering, “Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data,” Ma-
chine Learning, Volume 20, Number 3, September 1995.

[20] A. K. Haynes, “Learning Hidden Structure from Data: A Method for
Marginalizing Joint Distributions Using Minimum Cross-Correlation
Error,” Master’s Thesis, University of Illinois at Urbana-Champaign,
1997.

[21] E. Segal, D. Pe’er, A. Regev, D. Koller and N. Friedman, “Learning
Module Networks,” Journal of Machine Learning Research, Vol. 6, pp.
557588, 2005.

445

